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S1. NETWORK ELONGATION

Initially, each edge is assigned an elongation threshold εth. Before the crack propagation

begins, the edges are structurally reinforced randomly such that the elongation thresholds

of the edges are between 0.0500 and 0.0550, similar to the method employed in fracture

propagation [1]. Every two connected nodes differ in the amount of force loading they can

manage to have between them. Randomly assigning elongation threshold values takes into

account this disparity.

FIG. S1: Random reinforcement of network edges. (a) Elongation thresholds of the

horizontal edges and (b) elongation thresholds of the vertical edges in the lattice network.

The displacement of each node of mass m is then computed according to the breaking

dynamics of the configuration in Fig. S2. If the displacement of a particular node causes one

of its edges to elongate beyond its threshold then the link is considered broken and removed

from succeeding iterations of the simulation.

FIG. S2: Body diagram. Displacement of the (i, j)th node and its four nearest neighbors.
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S2. NUMERICAL STABILITY

The 2N2 equations for node positions and 2N2 equations for velocities were solved using

the fourth order Runge-Kutta (RK4) method with known local discretisation error O(δt5)

per time step iteration [1]. For δt = 2−10, the local error δξL is negligible at 9x10−16 per

RK4 application. The global error δξ, on the other hand, is O(δt4) and for our simulations

involving an NxN grid network described by 4N2 differential equations, the total accumu-

lated error for the entire network lifetime tf is δξ ∼ 4N2tf (δt)
4 [1]. With δt = 2−10, N = 50

and tf ∼ O(105), δξ ∼ 9x10−4 giving an error that is less than 0.1% for both node position

and velocity. These values give no significant position error and time delay on the onset of

fragmentation [1].

By subjecting a two-dimensional lattice to biaxial stretching and looking at the conser-

vation of energy injected in the system, Esleta et al. also found numerical stability of the

method with respect to lattice size . From their study, the waiting time tc which indicates

the onset of breaking was found to be linear with respect to lattice size N [1]. tc ∼ N

and the average force in each node ⟨Fnode⟩ ∼ 4NFapp which means that the Hamiltonian

will have constant increase with larger grid network sizes. This justifies the choice of our

parameters as they are shown to still capture the dynamics of larger grid networks while

reducing computational complexity (for RK4, computational complexity is proportional to

N2) [1, 2].

S3. DISTRIBUTION OF INFLUENCE

A. Lattice Network

1. Uniform Force Directions

Forces in a system can be directed uniformly such that the vertical and horizontal applied

forces exerted by connected nodes have the same directions. This results to a net force

directed diagonally in the network as illustrated in Fig. S3. These initial directions of F k
app

between neighboring nodes are maintained throughout the simulation.

Here, the node in the topmost left corner labelled as the source node in Fig. S3 (a) is the

least influential node and is influenced by all nodes in the network. Such force directions
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FIG. S3: Heatmap of a lattice network with uniform force directions. (a) The node in the

topmost left corner is influenced by all other nodes and the degree of influence decreases

diagonally towards the farthest reachable node at the bottom right corner. (b) Nodes are

influenced only by nodes that are to their right and below them. (c) All forces are directed

towards the most influential node in the bottom right corner.

pattern also allows nodes to be influenced only by nodes that are to their right and below

them as illustrated in Fig. S3 (b). All forces in the system flow towards the node in the

bottom right corner which is the most influential node in the network. This is also the only

node which is not influenced by any node in the network.

2. Random Force Directions

The directions of the applied forces in a lattice network are random when the interactions

of its components result to random distribution of loading and when the influential nodes

of the network are positioned randomly in grid space. We show in Fig. S4 that some nodes

are influenced by only a few nodes while others receive much influence. When the force

directions are random and not uniform, there are also more agents (6.24%) which are not

influenced by any node in the network.
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(a) (c) 

(b) 

FIG. S4: Heatmap of a lattice network with random force directions. Influence is spatially

distributed randomly. In (a) only 3.92% of the nodes has influence on the node in the

topmost left corner of the network but in (b) we show a node having a greater influence

range. (c) There are also more nodes (6.24%) which are not influenced by any node.

B. Erdos-Renyi Network

1. Uniform Force Directions

Though connections among nodes in an Erdos-Renyi network are random, force directions

can be made as uniform as possible by preferring specific positions in placing influential

nodes. In Fig. S5, we see that nodes are influenced only by nodes that are below them.

The number of nodes that are not influence by any node accounts for 6.24% of nodes in the

network which is similar to the case of lattice networks with random force directions.

2. Random Force Directions

In randomizing force directions in an Erdos-Renyi network, we are also distributing the

influentials in grid space. For such case, nodes are influenced by other nodes regardless of

their position as shown in Fig. S6. There are also more nodes which aren’t influenced by

any node and this accounts for 14.12% of nodes in the network.
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(a) (c) 

(b) 

FIG. S5: Heatmap of an Erdos-Renyi network with uniform force directions. (a) Nodes can

influence nodes that are not their spatial neighbors. The uniformity of force directions is

illustrated in (b) where nodes can only be influenced by nodes below them. (c) The number

of nodes that are not influenced by any node accounts for 6.24% of nodes in the network.

         

(c) 

(b) 

(a) 

FIG. S6: Heatmap of an Erdos-Renyi network with random force directions. (a) Nodes are

influenced by more nodes when both connections and force directions pattern are random.

(b) This is true regardless of the position of the node in grid space. (c) There are also more

nodes that are not influenced by any node which accounts for 14.12% of network nodes.
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C. Barabasi-Albert Network

1. Uniform Force Directions

Almost all of the edges of the Barabasi-Albert network considered were directed outward

and all non-zero node in-degrees are only at most kin = 2. Owing to the scale-free degree

distribution of the Barabasi-Albert network, the hubs account for almost all of the edges.

By restricting all of the edges of the hubs to be directed outward, and all others to prefer a

certain direction, uniformity in force directions can be attained as shown in Fig. S7. This

resulted to the hubs having a path to almost all nodes while other nodes have very few

connections. 49.28% of the nodes has no outgoing edge and hence resulted to most of the

nodes having only a few path connections.

FIG. S7: Heatmap of a Barabasi-Albert network with uniform force directions. (a) The

node with the highest degree is connected to almost all nodes. As illustrated in (b), due to

the uniformity of force directions and the scale-free degree distribution, other nodes are

connected to very few nodes. (c) 49.28% of nodes in the network has no outgoing edge.
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2. Random Force Directions

For the Barabasi-Albert network with random force directions, the number of edges

directed outward is about the same as those directed inward. Randomizing force directions

created more paths among the nodes. All nodes regardless of their degree or number of

connections have paths to a significant number of nodes in the network as shown in Fig. S8.

This lead to less nodes having no outgoing edge (68.26% reduction in nodes with no outgoing

edge) which in effect distributes influence in the network.

FIG. S8: Heatmap of a Barabasi-Albert network with random force directions. (a) The

node with the highest degree is connected to almost all nodes. (b) Randomizing force

directions allowed other nodes to have paths to more nodes. (c) 15.64% of nodes in the

network has no outgoing edge.

S4. BARABASI-ALBERT NETWORK CONFIGURATIONS

The fraction of disconnected edges shown in Fig. 6(e-f) and the lifetime of grid networks

of Barabasi-Albert networks in Fig. 8 are averages of two configurations of network hub

placement, (1) when the hubs are placed next to each other at the corner of the grid as in

Fig. S9(a, c and e) and (2) when the hub placements are shuffled as in Fig. S9(b, d and f).

Additionally, for the uniform force directions case, both (a) edges directed away from the
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(a) hubs in corner, edges away from higher k node (b) hubs shuffled, edges away from higher k node

(c) hubs in corner, edges towards higher k node (d) hubs shuffled, edges towards higher k node

(e) hubs in corner, edges in random directions (f) hubs shuffled, edges in random directions

FIG. S9: Barabasi-Albert network configurations. Hubs are either placed next to each other

at the corner (a,c,e) or in random positions (b,d,f). Edges in both placements are directed

away from the node with the higher degree k (a,b), towards the node with the higher

degree k (c,d) or randomly (e,f).

node with the higher degree as depicted in Fig. S9(a and b) and (b) edges directed towards

the node with the higher degree as shown in Fig. S9(c and d) are included in the results

presented.
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S5. GENERALIZATION TO OTHER KINDS OF SPATIAL NETWORKS

Starting with an initial spatial grid network with N x M nodes located in all intersections

made by the (N − 1) x M + (M − 1) x N edges, we can obtain other spatial arrangements

by finding a spatial grid network with the least number of intersections such that the actual

spatial network can be overlapped unto it in such a way that every node corresponds to one

and only one intersection in the initial spatial grid network. That is, we look for d given

below which represents the d x d size of each cell in our initial spatial grid network.

d = min(GCD({∆xi,i+1}), GCD({∆yi,i+1})) (1)

where i = 0, ..., n− 1, n is the number of nodes, {∆xi,i+1} is the set of horizontal distances

between the ith and (i+1)th node, and {∆yi,i+1} is the set of vertical distances between the

ith and (i+ 1)th node such that

∆xi,i+1%d = 0 (2)

∆yi,i+1%d = 0. (3)

FIG. S10: Spatial Grid. For any spatial arrangement of nodes, a smallest spatial grid can

be found such that all nodes lie in one and only one intersection in the grid.

We retain the nodes of the initial spatial grid network that corresponds to a node in the

actual spatial network and remove those that does not correspond to any node in the actual

spatial network. Hence, although most real world networks are not arranged spatially in a
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FIG. S11: Degree distribution of Singapore bus network.

grid, we can extend the model developed for spatial grid networks to other networks with a

different kind of spatial arrangement by systematically removing nodes to mimic real world

networks we want to apply the model to.

S6. APPLICATION TO BUS TRANSPORT NETWORK

The dynamical model of network evolution presented in this work can be used to explore

the resilience of a network under different force magnitudes and directions. We illustrate

its use using the actual bus network of Singapore. The nodes of the network as shown in

the inset of Fig. S11 are the bus stops and an edge is constructed between bus stop a and

b if there’s at least one bus service that travels from bus stop a to b. We use the method

discussed in section S5 and the actual (longitude, latitude) locations of the bus stops to

position them in the grid network.

In the absence of additional data, it can be assumed that the demand capacity of the links

is constant across the entire bus grid network. Hence, in simulating the evolution of the bus

grid network, the elongation thresholds ϵth are the same for all edges. For the case of the

Singapore bus network, it has been shown that the origin-destination (OD) travel demand

is a scale-free distribution [4, 5]. Only a few OD pairs are highly utilised while the rest are

rarely used [4, 5]. We can think of the travel demand as the applied force experienced by
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FIG. S12: Number of edges for each Fapp. Inset shows bus network edges weighted by Fapp.

every connected set of nodes. The applied forces can then be made to vary according to

number of edges = 2000 × (Fapp)
−1, (4)

which is similar to the relationship between the number of OD pairs and number of journeys

per OD pair found in [4, 5]. The assignment of Fapp according to Eqn. 4 is done by randomly

choosing from a biased list of edges with the probabilities of selection proportional to the

number of bus routes that includes each OD pair. The OD pair edge used the most has a

higher probability of being assigned the largest Fapp. The number of edges assigned for each

Fapp is shown in Fig. S12.

We vary the directions of the edges to investigate the resilience of the Singapore bus

transport network under different bus route directions. The force directions along the edges

considered are (a) the actual bus route directions, (b) force directions towards nodes with

higher degree, (c) force directions away from nodes with higher degree, and (d) random force

directions as shown in Fig. S13.

For the same force magnitudes applied to all edges, the Singapore bus network lasted

longest when the force directions were assigned randomly since this method reduces the

influence of the higher degree nodes. The next most effective strategy in delaying complete

network fragmentation is when forces are directed away from the node, followed by the

actual bus directions. Finally the least resilient network is when forces are directed towards
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(a) actual bus directions (b) towards higher k node

(c) away from higher k node (d) random directions

FIG. S13: Force directions in Singapore bus network. Force directions considered are (a)

actual bus directions, (b) towards nodes with higher degree k, (c) away from nodes with

higher degree k, and (d) random directions. Nodes are colored according to their in-degrees

and their sizes are based on their out-degrees. Edges are weighted according to Fapp.

the higher degree nodes in which case we are increasing the influence of the hubs even more,

thereby hastening network collapse.

Using the network lifetime tf given by the model as a measure of resilience, we can

probe the effect of specific changes in bus route directions on the robustness of the transport

network. Coupled with travel demand models, this will aid urban planners in constructing

a more robust and resilient transport network.

S7. CLUSTER SIZES

To further explore which among the networks considered is the most resilient, we show

the fragmentation and evolution of cluster sizes in lattice, Erdos-Renyi, and Barabasi-Albert
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(a) t = 0.0 (b) t = 11.0 (c) t = 31.125

FIG. S14: Singapore bus network evolution with actual bus routes as force directions. The

network completely fragments at t = 31.125. Nodes are colored according to in-degrees and

their sizes are based on out-degrees. Edges are weighted according to Fapp.

(a) t = 0.0 (b) t = 11.0 (c) t = 26.0625

FIG. S15: Singapore bus network evolution with forces towards nodes with higher degree.

The network completely fragments at t = 26.0625. Nodes are colored according to

in-degrees and their sizes are based on out-degrees. Edges are weighted according to Fapp.

(a) t = 0.0 (b) t = 11.0 (c) t = 32.0 (d) t = 37.4375

FIG. S16: Singapore bus network evolution with forces away from nodes with higher degree.

The network completely fragments at t = 37.4375. Nodes are colored according to

in-degrees and their sizes are based on out-degrees. Edges are weighted according to Fapp.
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(a) t = 0.0 (b) t = 11.0 (c) t = 32.0 (d) t = 52.75

FIG. S17: Singapore bus network evolution with random force directions. The network

completely fragments at t = 52.75. Nodes are colored according to in-degrees and their

sizes are based on out-degrees. Edges are weighted according to Fapp.

networks for Fapp = 0.6. From Fig. S18, we find that although the lattice network with

random force directions starts to break early in the simulation, it eventually becomes the

least fragmented.

FIG. S18: Number of clusters in the evolving lattice, Erdos-Renyi (ER) and

Barabasi-Albert (BA) networks for Fapp = 0.6. A lattice with random forcing directions

experiences the least amount of fragmentation.

Fig. S19 also shows that when the force sources are positioned randomly in the lattice

network, a giant cluster remains intact in the network. However, for the case of positioning

the force sources uniformly on the lattice network, the final configuration of the network

consists of small clusters with no giant cluster. For small time scales, a lattice network

with uniform force directions is more robust. However, longer time scales entail the need
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to randomize the position of the influential nodes in the lattice network to prevent total

network collapse.

(a) (b)

FIG. S19: Cluster sizes of lattice networks. Size of the largest cluster S and the average

size of the smaller clusters < s > as the lattice network is subjected to (a) uniform and (b)

random force directions with Fapp = 0.6. Random force directions leads to a percolating

cluster while uniformity in force directions causes nodes to detach from each other.

The Erdos-Renyi network (Fig. S20), on the other hand, fragments significantly early on

in the evolution of the network. But the subsequent fragmentation of its clusters is much

slower than in the lattice network. This initial fast rate of fragmentation of the Erdos-Renyi

network can be attributed to its initial structure having several clusters as opposed to the

lattice network which starts as one giant cluster.

From Fig. S18, the fragmentation of the Barabasi-Albert network resembles that of the

Erdos-Renyi network. However, examining the size of the largest component (Fig. S20 and

S21) reveals that the presence of hubs in a Barabasi-Albert network slows down further the

fragmentation of the largest cluster in the early stages of fast breakings as compared to an

Erdos-Renyi network.
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(a) (b)

FIG. S20: Cluster sizes of Erdos-Renyi networks. Size of the largest cluster S and the

average size of the smaller clusters < s > as the Erdos-Renyi network is subjected to (a)

uniform and (b) random force directions with Fapp = 0.6. The network fragments early on

in its evolution leading eventually to isolated nodes.

(a) (b)

FIG. S21: Cluster sizes of Barabasi-Albert networks. Size of the largest cluster S and the

average size of the smaller clusters < s > as the Barabasi-Albert network is subjected to

(a) uniform and (b) random force directions with Fapp = 0.6.
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